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Characteristics of Guided and Leaky Waves
on Multilayer Thin-Film Structures

with Planar Material Gratings
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Abstract—This paper presents the characteristics of guided
(surface) waves and leaky waves on multilayer structures with
planar implanted periodic dielectric blocks. A three-dimensional
(3–D) integral-equation formulation in conjunction with the
method of moments (MoM’s) is used to find the propagation
constants of the surface-wave and leaky-wave modes. The
analysis deals with layered structures with irregular implants.
Photonic band-gaps of both guided waves and leaky waves for
rectangular air-implants are identified. Anisotropic properties
of the surface waves and leaky waves are investigated. The
design of leaky-wave antennas with the information of mode
characteristics is discussed. The analysis is validated through the
comparison with a low-frequency effective-medium approach
and results for linear gratings.

Index Terms—Dielectric films, gratings, leaky waves, photonics,
surface waves.

I. INTRODUCTION

DUE TO THE RECENT advances of material technology,
there are growing research activities on the electromag-

netic applications of advanced (artificial) materials. Many
technologies will benefit if the electric or optical properties
of materials can be properly controlled. Photonic crystals
where wave propagation is prohibited within a certain band
are examples of such applications [1]. In addition, thin-
film structures containing periodic material implants (gratings)
have been of considerable interest in integrated optics [2],
leaky-wave antennas [3], frequency-selective surfaces [4], [5],
and absorbing materials [6], [7]. In the past, there has been
considerable work on material-layered structures with material
gratings, mostly for two-dimensional (2-D) structures with
gratings in one direction. References [8]–[11] are some of
the examples. Layer structures with 2-D gratings had also
been investigated, but mostly for scattering applications, such
as for frequency-selective surfaces [4], [5] and absorbers
[6], [7]. In recent years, due to the advances of microma-
chining technology, layered thin-film structures with planar
material gratings are becoming applicable and have many
potential millimeter-wave and optical applications, such as
planar-distributed Bragg reflection devices and planar leaky-
wave antennas. The implementation of photonic band-gap
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materials in integrated circuit and antenna structures may open
up many possibilities of useful devices. The properties of
surface and leaky waves on a layered structure with planar
material gratings provide the explanation of many fundamental
physical phenomena of the associated devices.

In this paper, a three-dimensional (3–D) integral-equation
formulation in conjunction with the method of moments
(MoM’s) is applied to the electromagnetic boundary value
problems of dielectric-layered structures with planar periodic
material implants. The integral equation and the associated
dyadic Green’s function for layered periodic structures are
described in Section II and the Appendix. The MoM and
numerical consideration are described in Section III. Results
for surface-wave (bounded) and leaky-wave characteristics as
a function of material and geometric parameters including the
planar-direction angle are discussed in Section IV. Photonic
band structures for selected examples of planar grating
structures are also illustrated.

II. PERIODIC DYADIC GREEN’S FUNCTION FORMULATION

Although the analysis can be easily extended to more layers
with multiple implants, the formulation in this work is limited
to a three-layer structure with planar material gratings within
the middle layer shown in Fig. 1. The geometry is assumed
to consist of infinite planar arrays of material blocks within a
surrounding layer. The top region is air and the bottom region
can be either a substrate or a conductor ground. Although the
implants shown in Fig. 1 are rectangular blocks, the developed
analysis is general enough for most irregular implants. If the
implanted material has a dielectric constant, Maxwell’s curl
equations for time-harmonic fields within the supporting layer
(dielectric constant ) can be written as

(1)

and

(2)

is a unity function within the material implants and
zero elsewhere. The first term at the right-hand side (RHS)
of (2) is treated as the displacement current and is noted as
that exists only within the implants. The electric-field integral
equation for the pertinent problem is

(3)
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Fig. 1. Geometry of infinite planar arrays of dielectric blocks in a multilayer
structure.

which is established to express electric fields in terms of
displacement currents. The volume integral is over only the
region of implanted material blocks centered at the origin
of the Cartesian coordinates. The electric fields within the
material block at a unit cell are the unknowns in the MoM
analysis. Since all three components of the fields are involved,
it is necessary to deal with a full dyadic Green’s function for
layered media expressed as

(4)

Since the structure is periodic, Floquet’s theorem is applied
to simplify the problem to the modeling of electromagnetic
waves within an infinitely long cylinder shown in Fig. 2.
The boundary conditions at the surface of the unit cell are
determined by the Floquet’s theorem. The cross section of the
rectangular cylinder extends within and

. A material block is at the center of the cell
with length (along the axis), width (along the axis),
and the thickness (along the axis). The supporting layer
with thickness extends from to . is the distance
measured from the bottom of the block to the layer interface
(see Fig. 2). For planar periodic structures, the components
of the dyadic Green’s function in terms of Floquet modes
(plane-wave expansion) [12] may be expressed as

(5)

where and . or is
either , , or . and are the propagation constants in the

and directions, respectively. is the spectral Green’s
function component and is a function of spectral variables
and , , , and the material parameters. This spectral Green’s
function for a multilayer structure is derived with a spectral
matrix method [13] and is described in the Appendix.

III. T HE MOM AND NUMERICAL CONSIDERATION

A finite-element MoM procedure is applied numerically to
determine the electric fields within the material implants. This

Fig. 2. A unit cell of 2-D periodic material blocks within layered media.

is done first by discretizing the material implants into many
small cells within which the fields are assumed constants, but
with unknown coefficients

(6)

where within the cell ( , , ), ( , , ) and
, elsewhere. There are , , and divisions in

each side of the material blocks (the, , and directions,
respectively). If the field representation in (6) is used in the
vector integral equation and the resulting fields are evaluated
at the cell at indices , , and , respectively, for the ,
, and directions, the integral equations are converted into

a set of linear equations (a matrix equation):

(7)

where each or represents a particular field component
at a cell and is a 3 3 matrix resulting from two
volume integrals over the cells associated withand in
the MoM procedure. The center of the rectangular cell for
an expansion mode is and for a testing mode is with

and , and the cell
size is , , and in each of the three directions.
can be expressed as

(8)

and

(9)

The integration in (9) can be done analytically according to
the procedures described in the Appendix. Analytic effort is
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Fig. 3. Comparison of full-wave and transmission-line methods for
guided-wave modes of a 1-D grating structure.F = 15 GHz,
�r = 10; h = 3:18 mm, d = 3:25 mm, a = 1:58 mm.

required to ensure that there is no exponentially growing terms
(as or becomes large) in the formulation. If both indices

and run from 1 to , (7) represents
a matrix equation with order . A nontrivial solution for the
fields requires the matrix determinant to be zero, which results
in a characteristic equation. The eigenvalues (propagation
constants) are obtained from the roots of this equation.
For a lossless structure, the propagation constant of a guided
(surface) wave is a real number, and a bisection method for
finding the roots of nonlinear functions is used. However,
leaky-wave propagation constants are complex-valued and
the Newton method is used for two real nonlinear equations
with two unknowns (real and imaginary part of the complex
propagation constant).

One of the features of the MoM is that the shape of the
implants can be irregular. For instance, in the process of
solving the matrix equations for rectangular blocks, one may
set the displacement currents at some of the cells to zero. This
procedure corresponds to physically cutting off pieces of the
implants. An extensive validity check of the present analysis
is performed. First, the implanted blocks are set as large as
the unit cell so that the analytic results for the guided-wave
modes and the plane-wave scattering are available. This test
provides information regarding the number of expansion cells
required for reasonable results.

The test is also performed for the cases of one-dimensional
(1–D) gratings. In the analysis, if the implanted blocks are
connected to one of the cell boundaries, the geometry reduces
from 2-D to 1-D gratings. Compared here are the full-wave
results of propagation constants of guide-waves against those
with a transmission-line method [3]. The comparison is shown
in Fig. 3. It is seen that the two methods agree well for shallow
gratings. The discrepancies increase with the grating depth. In
the transmission-line method, the grating structure is treated as

Fig. 4. Leaky-wave attenuation constant versus grating thickness for a 1-D
grating structure.

Fig. 5. The geometry of a grounded dielectric slab with planar periodic air
blocks. The results in Table I and Figs. 6 and 7 are based on this structure. The
parameters for Table I area = 3 mm, h = 3 mm, " = 10; L = W = 1:0

mm, andT = 3:0 mm.

the periodic cascades of two surface-waveguide sections, and
all the higher order modes at the junctions are neglected. The
junction (or higher order mode) effects become more important
as the grating depth becomes larger. The validation is also
performed for the attenuation constants of a leaky-wave mode
in 1-D gratings. The results of the comparison between the
integral-equation analysis in this paper and the mode-matching
method described in [2] are shown in Fig. 4. The agreement
is excellent.

The validation of the analysis is further checked against
the effective-medium method, which is particularly accurate
for low frequencies (cell size is much smaller than a wave-
length). It has been shown in [14], [15] that a medium with
infinitely long planar periodic rods can be approximated as a
homogeneous medium with a uniaxial anisotropy. If dielectric
constants of the supporting layer and the material blocks in
Fig. 5 are and , respectively, and the thickness of the
layer and blocks is the same, the dielectric constants of the
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TABLE I
SURFACE-WAVE PHASE CONSTANT COMPARISON

effective uniaxial material are

(10a)

and

(10b)

is the dielectric constant in the planar directions andis
the area (normalized to the area of a unit cell) occupied by
a material block and is defined as ( )/( ). The test
geometry is planar periodic air blocks carved on the surface of
a grounded dielectric slab shown in Fig. 5. For the test case,
the effective dielectric constants are and ,
and the propagation constants are found from the characteristic
equations for an anisotropic homogeneous grounded slab [16].
It is seen that the full-wave method agrees very well with the
approximated effective-medium method, especially for lower
frequencies.

It is observed that for higher the frequencies or larger
the dimensions, more expansion cells are needed to obtained
reasonable convergence. It is observed that the number of
cells in the vertical () direction is more crucial. Generally, a
vertical-cell size of about a tenth of the wave length provides
reasonable convergence. In this paper, 1681 Floquet modes
with are used to produce the numerical results.

IV. RESULTS AND DISCUSSIONS

Guided waves and leaky waves on a dielectric-layered
structure with 1-D material gratings have been well studied
and their characteristics are understood. For 2-D material
gratings, it is of interest to investigate the mode characteristics
in various directions and the photonic band structures. An
example of the dispersion diagram for guided- and leaky-
wave modes of a grounded dielectric slab with 2-D rectangular
material gratings (Fig. 5) is shown in Fig. 6 for propagation
in the direction (see Fig. 2). For the-direction waves,
the mode characteristics are similar to the case of the 1-D
grating. However, for planar grating structures, the modes are
hybrid. There exist photonic band-gaps for modes near the
Brillouin zone boundary. Since the structure is periodic, if
is a phase constant in the-direction, for any
integer should also be the phase constant of the same wave.
The Brillouin zone [17] is defined in-space (phase-constant
space) within which each wave has a unique phase constant. At
low frequencies, the fundamental (hybrid) modes are similar

Fig. 6. Dispersion diagram for modes in a grounded slab with planar gratings
(shown in Fig. 5).h = 2 mm,T = 0:5 mm, � = 10; a = b = 5 mm,W = 3

mm, andL = 2:5 mm. x̂ is the propagation.

to a TM (upper) mode of a grounded dielectric slab. When
the frequencies are such that the Bragg condition is satisfied,
the bounded modes turn to complex-wave modes (band-gap
zone). As frequency increases further, bounded surface-wave
modes (in the slow-wave zone) turn into proper leaky wave
modes (in the fast-wave zone). The frequency where the first
leaky-wave mode turns on and the frequency band where only
a single leaky-wave mode exist are of practical interest. These
are determined by the profile of the gratings. It is known that
the leaky-wave beam angle is determined mostly by the phase
constant according to the formula [2]

(11)

is measured from the horizon. It is seen from Fig. 6 that
the fundamental leaky-wave phase constant decreases with
frequency. Therefore, the beam angle increases with frequency
as was demonstrated in Fig. 7. In Fig. 7, the beam angle
versus frequency is shown for three different sets of grating
width ( ). The results are shown for the frequency range
where only the fundamental leaky-wave mode exists. The
results demonstrate the transverse-grating effects on leaky-
wave characteristics. It is seen that the increase of the air-
block width results in the increase of the leaky-wave turn-
on frequency and the decrease of the beam angle (at a
given frequency). The maximum beam angles without multiple
beams are about the same for all the grating widths.

A contribution of this paper is the investigation of the
characteristics of planar 2–D surface waves and leaky waves.
These waves can be excited by microstrip elements on planar
grating structures. An example of the phase constant of the
fundamental surface-wave mode versus the directional angle
is shown in Fig. 8. A given and the corresponding in
Fig. 8 determine the propagation constant at a particular planar



432 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 45, NO. 3, MARCH 1997

Fig. 7. Fundamental leaky-wave beam angle versus frequency. The leaky
wave is propagating in thêx direction. All other parameters are the same as
those in Fig. 6 except the block width.

direction ( angle). Due to the symmetry, the irreducible
Brillouin zone is for the angle from 0 to 45. The results in
Fig. 8 are for two different frequencies, 15.4 and 16 GHz. It
is seen that there exist certain ranges ofwhere propagating
surface-wave modes vanish. Mathematically, the propagation
constants are complex-valued in the propagation forbidden
zone. It is seen that the wave forbidden zone varies with
frequency. In contrast to the metal-clad dielectric slab with
planar gratings where propagation may be prohibited in all
directions [18], wave prohibition insome regions is found
here—notall directions. The wave forbidden zone varies with
frequencies. This implies that the structure can be used as a
space-frequency signal selector.

Planar leaky-wave characteristics for a planar grating struc-
ture are investigated through the example shown in Fig. 9,
where the leaky-wave phase constants are for a three-layer
dielectric structure with planar air blocks embedded within
the middle layer. It is seen that there exists an angle range
(near ) where the leaky wave becomes a surface
wave (the propagation constant is real and greater than).
This implies that there exists an angle range where the leaky
wave is forbidden (null in leaky-wave antennas). The other
interesting observation is that the leaky-wave phase constant
varies significantly with direction ( angle). This implies that
as a leaky-wave antenna, the beam angle varies with each
cut. It is possible, however, to arrange the shape of the unit cell
of an infinite array of implants to minimize this beam-angle
variation with .

It has been shown in [19] that there exists photonic band-
gaps in 1-D material grating structures. It has also been
shown in [18] that a complete photonic band-gap exists in
planar material grating within a dielectric layer sandwiched by
conductor plates. A question one would ask is “can an open
planar material grating structure be constructed where guided

Fig. 8. Fundamental surface-wave phase constant for a grounded slab with
planar gratings.h = 2 mm, T = 1 mm, " = 10; a = b = 5 mm, and
L = W = 2:5 mm.

Fig. 9. Leaky-wave phase constant for a three-layer structure with planar
periodic arrays of air blocks.F = 20 GHz, T = 1 mm, a = b = 5 mm,
and L = W = 3 mm.

waves (surface waves) are prohibited in all directions?.” This
investigation cannot confirm that surface modes may be com-
pletely eliminated by using material gratings, but there is room
for further research on this subject. A typical example of a
surface-wave forbidden band versus direction angle is shown
in Fig. 10. The example is for planar periodic material blocks
on top of a conductor. It may be identified from Fig. 10, at a
given frequency, the range of angles where guided waves
are eliminated. The photonic band-gap at any givenangle
may also be found from Fig. 10.
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Fig. 10. Photonic band-gap versus wave propagation angle for planar pe-
riodic dielectric blocks on a ground plane.T = 1 mm, a = b = 5 mm,
L = W = 3 mm, and� = 10.

Fig. 11. Photonic band structures for the surface-wave modes of planar
periodic dielectric blocks on a ground plane. All the parameters are the same
as those in Fig. 9.

The photonic band structures for the bounded (slow-wave)
modes of the structure in Fig. 10 is shown in Fig. 11. In the
diagram, between and points, the modes are propagating
in the direction, while between and points, the modes
are propagating in the direction. The shadow region in
the inset of Fig. 11 is the irreducible Brillouin zone (reciprocal
lattice). The dotted envelope in Fig. 11 corresponds to the
plot for , the boundary between guided (slow-wave)
modes and leaky-wave (fast-wave) modes. In betweenand

points, the bounded waves satisfy the Bragg condition in
the direction. At the point, the guided waves satisfy the
Bragg condition in the direction. From Fig. 11, one can

Fig. 12. A � current source in a three-layer structure. The geometry is for
Green’s function derivation.

see that there exists a photonic band-gap near thepoint for
guided wave in the direction. Similar observation is also
found in [2], [19] for the linear grating case. Photonic band-
gaps are also found in other directions of propagation as shown
in Fig. 11. Those band-gaps occur at different frequencies and
there is no common frequency where all the band-gaps exist.
This implies that complete surface-wave elimination is not
possible in this example.

V. CONCLUSION

In this paper, through the use of a volume integral-equation
analysis, guided-wave and leaky-wave characteristics of mul-
tilayer thin-film structures with planar material gratings were
investigated. The results are validated by comparison with
effective-medium approximation in low frequencies and in the
limiting case against the linear grating cases. In this paper,
it was found that there exists an angle range in the planar
direction where guided waves (surface waves) are prohibited.
The surface-wave forbidden zones shift with frequencies. For
the open planar geometry, a complete photonic band-gap is
not found. An angular-dependent photonic band-gap and band
structures of planar grating structures are identified. The planar
surface-wave patterns can be tailored by proper design of
the planar gratings in a thin-film structure. This feature finds
applications in high-directivity surface-wave antennas and
space-frequency signal selectors. The leaky waves supported
by the planar grating structures can be designed for high-gain
integrated antennas [20]. The leak-wave beam angle as func-
tions of frequency and grating parameters were investigated.
The single-beam frequency band were also identified. It was
found that there may also exist wave forbidden zones for leaky
waves and the beam angle varies with theangle.

APPENDIX

SPECTRAL MATRIX METHOD FOR

GREEN’S FUNCTION IN LAYERED MEDIA

For the pertinent problem, the spectral Green’s function is
the spectral electric field due to a-current source embedded
within the middle layer as shown in Fig. 12. We may define a
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4 1 matrix for the spectral tangential fields as

(12)

Tangential fields in a homogeneous half-space can be derived
as a linear combination of TE and TM waves that satisfy
the Sommerfeld’s radiation condition [13]. As a result, the
tangential-field vector at the top and the bottom region in
Fig. 12 can be found as

(13)

and

(14)

if the structure is supported by a dielectric half-space, and

(15)

if the structure is backed by a perfect conductor., , ,

and are unknowns to be determined,

and , , , , or . If the tangential
fields in the homogeneous-layered media are derived in terms
of a linear combination of TE and TM waves, a transition
matrix within each layer may be obtained as

(16)

where

(17)

, and with , , or .
The unknowns , , , and are found from the following
matrix equations:

(18)

is the location of the source and is related to the
source excitation

or (19)

for the source in the , , or direction, respectively [21].
The solutions of (18) together with the transition matrix
allows one to determine the spectral fields at any location
within the layered media. To ensure that (18) is invertable
numerically for large or in practice, depending on the
location of the field point, (18) is rearranged into two different
forms. For there is

(20)

and

(21)

For there is

(22)

and

(23)

The integration of the spectral Green’s function overand
shown in (9) is a necessary procedure in the volume integral-
equation analysis. This integration is directly related to the
integration over (20) and (21), or (22) and (23), depending
on locations of the source and field points. It is possible to
perform the integration analytically. This detail is omitted here.
Equation (17) can be normalized by dividing . The

terms, which grow exponentially, can be absorbed into
unknowns , , , and . As a result, all the terms and
matrix inversion are well behaved.

ACKNOWLEDGMENT

The author would like to thank Prof. D. R. Jackson at the
University of Houston for helpful discussions on leaky waves.

REFERENCES

[1] E. Yablonovitch, “Photonic band-gap structures,”J. Opt. Soc. Amer. B,
Opt. Phys.,vol. 10, no. 2, pp. 283–294, Feb. 1993.

[2] S. T. Peng, T. Tamir, and H. Bertoni, “Theory of periodic dielectric
waveguides,”IEEE Trans. Microwave Theory Tech.,vol. MTT-23, pp.
123–133, Jan. 1975.

[3] T. Itoh and A. Hebert, “Simulation study of electronically scannable
antennas and tunable filters integrated in a quasiplanar dielectric
waveguide,”IEEE Trans. Microwave Theory Tech.,vol. MTT-26, pp.
987–991, Dec. 1978.

[4] E. W. Lucas and T. P. Fontana, “A 3-D hybrid finite element/boundary
element method for the unified radiation and scattering analysis of
general infinite periodic arrays,”IEEE Trans. Antennas Propagat.,vol.
43, pp. 145–153, Jan. 1995.

[5] H. Y. D. Yang, N. G. Alexopoulos, and R. Dias, “Reflection and
transmission of waves from artificial-material layers made of periodic
material blocks,” inIEEE Int. Symp. Antennas Progagat. Dig.,Balti-
more, MD, July 1996, pp. 1428–1431.

[6] C. F. Yang, W. D. Burnside, and R. C. Rudduck, “A double periodic
moment method solution for the analysis and design of an absorber
covered wall,”IEEE Trans. Antennas Progagat.,vol. 41, pp. 600–601,
May 1993.

[7] W. Sun, K. Liu, and C. A. Balanis, “Analysis of singly and doubly
periodic absorbers by frequency-domain finite difference method,”IEEE
Trans. Antennas Progagat.,vol. 44, pp. 798–805, June 1996.

[8] W. Platte, “Spectral dependence of light-induced microwave reflec-
tion coefficient from optoelectronic waveguide gratings,”IEEE Trans.
Microwave Theory Tech.,vol. 43, pp. 106–111, Jan. 1995.



YANG: CHARACTERISTICS OF GUIDED AND LEAKY WAVES ON MULTILAYER THIN-FILM STRUCTURES 435

[9] S. D. Gedney, J. F. Lee, and R. Mittra, “A combined FEM/MoM
approach to analyze the plane wave diffraction by arbitrary gratings,”
IEEE Trans. Microwave Theory Tech.,vol. 40, pp. 363–370, Feb. 1992.

[10] S. I. Pereverzev and P. Y. Ufimtsev, “Permittivity and permeability of
a fiber grating,”Electromagnetics,no. 14, pp. 137–151, 1994.

[11] W. P. Pinello, R. Lee, and A. C. Cangellaris, “Finite element modeling
of electromagnetic wave interactions with periodic dielectric structures,”
IEEE Trans. Microwave Theory Tech.,vol. 42, pp. 2294–2301, Dec.
1994.

[12] D. M. Pozar and D. H. Schaubert, “Scan blindness in infinite arrays
of printed dipoles,”IEEE Trans. Antennas Progagat.,vol. AP-32, pp.
602–608, June 1984.

[13] J. L. Tsalamengas and N. K. Uzunoglu, “Radiation from a dipole in
the proximity of a general anisotropic grounded layer,”IEEE Trans.
Antennas Progagat.,vol. AP-33, pp. 165–172, Feb. 1985.

[14] E. F. Kuester and C. L. Holloway, “Comparison of approximations
for effective parameters of artificial dielectric,”IEEE Trans. Microwave
Theory Tech.,vol. 38, pp. 1752–1755, Nov. 1990.

[15] , “A low-frequency model for wedge or pyramid absorber arrays-
I: Theory,” IEEE Trans. Electromag. Compat.,vol. 36, pp. 300–306,
Nov. 1994.

[16] H. Y. Yang and J. A. Castaneda, “Printed dipole characteristics in a
two-layer geometry with uniaxial anisotropy,”Electromagnetics,vol. 9,
no. 4, pp. 439–450, 1989.

[17] N. W. Ashcroft and N. D. Mermin,Solid State Physics.New York:
Saunders College Publishing, 1976.

[18] H. Y. D. Yang, “Finite difference method for 2-D photonic crystals,”
IEEE Trans. Microwave Theory Tech.,vol. 44, pp. 2688–2695, Dec.
1996.

[19] H. Stoll and A. Yariv, “Coupled-mode analysis of periodic dielectric
waveguides,”Opt. Commun.,vol. 8, no. 1, pp. 5–7, May 1973.

[20] H. Y. D. Yang, N. G. Alexopoulos, and E. Yablonovitch, “Photonic
band-gap materials for high-gain printed circuit antennas,”IEEE Trans.
Antennas Progagat.,vol. 45, pp. 185–187, Jan. 1997.

[21] H.-Y. Yang, J. A. Castaneda, and N. G. Alexopoulos, “Surface wave
modes of printed circuit on ferrite substrates,”IEEE Trans. Microwave
Theory Tech.,vol. 40, pp. 613–621, Apr. 1992.

Hung Yu David Yang (S’87–M’88–SM’93) re-
ceived the B.S. degree in electrical engineering from
the National Taiwan University, Taipei, Taiwan, and
the M.S. and Ph.D. degrees in electrical engineering
from the University of California, Los Angeles
(UCLA), in 1982, 1985, and 1988, respectively.

From 1988 to 1992, he was with Phraxos Re-
search and Development, Inc. as a Research En-
gineer. There he was involved in the development
of computer codes for frequency-selective surfaces,
scattering-form antennas, design of microstrip an-

tenna arrays, and antennas on nonreciprocal materials. Since August 1992, he
has been an Assistant Professor in the Electrical Engineering and Computer
Science Department, University of Illinois at Chicago. He serves as an
Associate Editor of IEEE TRANSACTIONS ANTENNAS AND PROPAGATION since
1995, and a Technical Program Member of IEEE Microwave Symposium
since 1994. He has published more than 60 journal and conference papers.
His recent research interest has been on the development of computational
methods for radiation and scattering from artificial periodic materials, vector
integral-equation method and frequency-domain finite-difference method for
photonic band-gap structures and advanced materials, wave interaction with
bianisotropic media, and printed circuits and antennas on gyrotropic media.

Dr. Yang is a Member of URSIA Commission B and Sigma Xi.


